
TOWARD A THEORY OF TURBULENCE 

L. A. Rott UDC 532.542.3 

Criteria are established for the transition of laminar flow into turbulent as a 
consequence of probability estimates of interaction of individual liquid layers. 

The well-known phenomenological transport equations (conservation laws) for continuous 
media can be obtained by use of statistical (kinetic) distribution functions. Single-index 
(condition-free) correlative functions [1-3] were first used for this purpose, then followed 
by multindex conditional distribution functions [4]. Basic macrocopic qualities are defined 
with their aid (mass density, flow velocity, energy density, stress tensor, thermal flux 
density, etc.). 

The averaging operation for any dynamic quantity then involves not only averaging over 
the molecular momentum space of the medium, but also averaging over a small configuration 
space volume. Thus, in the conditional distribution it is sufficient to perform averaging 
over a molecular cell. A consequence of this operation is the "concealment" of the internal 
microscopic fluctuation mechanism of the medium, and its explicit effect on the macroscopic 
properties. In addition such an effect can be vulcanized, as obviously occurs together with 
external perturbation upon transition of a laminar liquid flow to turbulent. 

Is it then possible to consider this fact in some manner, remaining within a phenomeno- 
logical approach without a priori recourse to unavoidable averaging of the fundamental hydro- 
dynamic equations in the region of the completed transition? Most important, using this path 
can we predict the region of transition from laminar to turbulent flow, using the same des- 
cription in both cases? We will attempt to provide a positive answer to this question. 

In view of the presence of an intrinsic fluctuation mechanism in the medium, it is proper 
to supplement the well-defined hydrodynamic description with probability relationships, i.e., 
together with the mechanical prediction that at a given time at a given point in the space 
r the liquid will have a velocity v, we commence from the fact that the given property, having 
a velocity v, has a probability distribution law: this property may manifest itself with one 
or the other probability in the vicinity of the point r. The vicinity of effective appearance 
of the expected property may prove to be large, and is the defining characteristic of liquid 
behavior. 

We introduce f(r'!v(r)), the density of the probability that within the volume dV about 
the point r' the medium has a velocity v, found as a solution of the Navier-Stokes equation 
for the point of space r. The function defined in this manner has the dense of a conditional 
distribution function for the original steady-state liquid flow. The initially proposed 
laminar flow hypothetically remains the same for any velocity values (Reynolds numbers). 

It is evident that when the flow velocity at all points of the medium is identical (v = 
const), we have the limiting case 

[ (r'lv (0)  : 6 (r' - -  O. ( 1 )  

In this case existence of the velocity v at the point r is a certainty. 

In the future, we will take a Gaussian distribution law for f. Expanding the dispersion 
coefficients of the distribution law in a series in velocity gradients and considering the 
possibility of Eq. (i), for the mean square deviation o of the isotropic liquid, in the first 
approximation we obtain 

: a ( V ~  ~, a = c o n s t .  ( 2 )  
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We will consider the difference ol-o 2 which must depend on the difference between two 
adjacent points of the medium [rl-ra]. The relationship between them may in principle be of 
a different character for the determination of the laminar and turbulent liquid flows. The 
first case will correspond to the inequality 

and the second, to the converse inequality. 

The fact that both cases are possible can easily be proved with the example of a steady 
state Poiseuille flow. With a constant pressure gradient (x-axis directed along the tube) 
for any two points in a tube cross section and a single radial direction 

and Eq. (3) implies that 

{,~p)= = o (4) 
I ~ - -  ~1 = 4 ~  2 ~ , T x  Jr 1 - -  rill, 

a* ( d p ) = ( 2 r ~ + H ) < l ,  H = r ~ - - r a > O ,  a*-- a (5) 
4~1 z ~, Tx ] 

The boundary of transition of the laminar flow into turbulent is related to transforma- 
tion of Eq. (5) into an equation from which we define 

a* = 2~z 

R k~/cr 
(6) 

In fact, if the pressure gradient is less than the critical value, inequality (5) with 
consideration of Eq. (6) is satisfied for any values of r I and r 2. This will definitely not 
occur if the pressure gradient is higher than the critical value. 

The fact that after disruption of Eq. (3) a qualitatively new liquid state develops is 
evident form general considerations: since Eq. (3) refers to any two points, including two 
points separated by an arbitrarily small distance, disruption of the inequality also implies 
"destruction" of the differential equation describing the laminar flow. The derivation of 
the equation becomes invalid because the derivative of the velocity loses its meaning, becoming 
a random quantity. 

From the above there follow three consequences, which have been confirmed experimentally. 
The first of these is the fact that turbulence is not generated simultaneously over the entire 
section as the pressure gradient increases, but infailingly commences from the tube surface. 
It is simple to determine the thickness of the turbulent layer R - R 0 by using the inequality 
which is the converse of Eq. (5): 

[ ] No = . e  2 \-~-x; cr 

Now Eq. (5) is valid only for points of the flow core with radius R 0. The converse in- 
equality is valid for the turbulent wall layer. Complete turbulization of the flow sets in 
an dp/dx = V~(dp/aX)cr when R0 vanishes. The second consequence is closely related to the 
first. Since the pressure gradient is proportional to the Reynolds number, the width of the 

~. ion of total transition of laminar flow into turbulent is defined by the ratio Re/Reef = 
With increase in Recr the width of the transition region increases. 

We will note in passing that for liquid flow between two fixed parallel plates the height 
of the wall layer with turbulent motion y is defined by an expression: 
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h \ d x / o r  y = -~- 1 ~ , (8) 

~. dx) 

where h is the distance between the plates. As is evident from Eq. (8), in contrast to flow 
in a tube, in principle turbulization sets in as Idp/dx I § ~. 

From the above there also follows the third consequence - the necessary existence of a 
boundary layer. This is especially clear in the example of Couette flow. In the absence of 
such a layer Eq. (3) would never be disrupted (the left side is always equal to zero) and 
turbulent flow could not develop. 

At the same time, it is evident that disruption of condition (3) is not sufficient for 
transition of laminar flow to turbulent, since it does not contain the requirement of existence 
of a minimum turbulence scale (Kolmogorov hypothesis). According to condition (3) the thick- 
ness of the initial turbulent wall layer, can be arbitrarily small, which as will be shown 
below, is not in reality the case. 

In the future we will consider only Poiseuille flow along a tube of radius R. We divide 
the radius into a number of intervals and consider the adjacent segments b I (from the wall) 
and b 2. Let vl, the velocity at one point of the segment bz, be a solution of the Navier- 
Stokes equation with the assumption of existence of a steady State boundary layer. Then v 2 
is a corresponding value for a point of the segment b 2. 

Disruption of condition (3) implies that the first layer of liquid (of thickness b I) 
"entangles" layer b 2 in the sense that now without doubt at a I >> o 2 in the second internal 
segment there may be a velocity v 2 or v I (the latter, naturally, as the liquid transport 
velocity). 

In fact, if we term the appearance of the velocity v I within the finite interval by dy 
belonging to the interval b 2 the event A, and that of the appearance of the velocity v2, 
event B, then the probability of the event A + B (where A and B are comparable and independent 
events) 

P (A -t-B) = P (A) 4- P (B) - -  P (AB) 

where all terms on the right now become comparable to each other. 

Thus, in the second layer, an alternation of laminar and turbulent liquid motion sets in 
(self-oscillating regime). Intense interaction of the liquid layers begins, this being a 
defining feature of turbulence. 

We will divide the radius R into a finite, but arbitrary number of segments b k. Making 
use of Eq. (2), we can construct an integral distribution function for a given velocity v, 
calculated for an arbitrary fixed points of the given segment. If for this point we have 
Y0k-z in the segment bk_ z (the y-axis directed along the radius R), in which the velocity 
Vk_ l is found as a solution of the Navier-Stokes equation, then the integral distribution 
function #(Yk-1) will be equal to: 

1 Yh-1 { -  ~_! (Yok-1) } (~k-1 - -  90k-l) 2 d~h_l. ( 9 ) 

We construct an analogous function for the adjacent segment b k. It is always true here 
that Ok--i(y0~_1)>bk(y0h). In light of this, their difference can be related to the fact that 
beginning at some value of Reynolds number the first function ~(Yk-z) intersects the second 
~(Yk), within the adjacent interval b k. There occurs a "collision" of the two curves, which 
is an analog of collision of two adjacent layrs of a hypothetically laminar liquid flow. 
This occurs when 

g~ ~ - - ~  + b~, (I0) 
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if we relate Y0k-i to the core of the segment bk_i and take Y0k-i = 0, the values of the two 
~ y~: integral distribution functions become identical at the point Yk-1 

(ii) 

In principle Eq. (ii) permits us to find the coordinate y~, and together with Eq. (i0) 
to determine yet one more condition, independent of Eq. (3), for the difference Ok_1-o k. 

However, for intermediate qualitative (preliminary) estimates the search for the point of 
intersection of the two integral distribution curves can be replaced by a search for the 
point of intersection of the corresponding differential distribution curves (their right- 
hand branches), which in principle is no departure from the ideology under consideration. 
It then follows that 

y*~___ bk-l-Jf-bk 1-}- ~ l + ( b h _ l + b k ) s l n  ~k-1 
2 ~h-x ~ ' 

A = ~  - -  (~h 
(y2 

k ~ . l  

( 1 2 )  

and for the unknown differences Ok_l-Ok, using Eqs. (i0) and (12), we obtain an additional 
condition for turbulization of the flow in the liquid layer: 

(~h-a(bk-lq-bh) (rh-1 -~(~k 1 --}- (b~-l'-}-bh) z ~ln (~-1 (13) 
o'k-1 - -  o'k ~ (Oh-1 "-[- 2Oh) (o'h-1 -'[- ~h) o" h " 

In contrast to the first (necessary) condition for disruption of laminar flow, Eq. (3), 
condition (13) does not admit an arbitrarily small turbulization layer thickness, i.e., 
there is in fact a finite turbulence scale. We are thus justified in terming condition 
(13) sufficient. 

In fact, by considering two adjacent layers b I and b=, it is easily proved that those 
layers cannot be arbitrarily small without disrupting condition (13). It is significant that 
the thickness of the first laminar layer at the wall b I has a minimum value. A~d it is just 
this layer which serves as an "external" source of disturbance for the adjacent layer b 2, the 
latter in turn plays the same role for the third layer, etc. 

Our entire examination has been based on a well-known expansion of dynamic formalism. 
On the one hand, for the functions ~(t) used here, a solution of the hydrodynamic problem 
(the Navier-Stokes equation) is required, while on the other, the duration of the existence 
of such a solution (laminar flow) is finite and is periodically replaced by the time of exis- 
tence of the turbulent vortex. If the total period is taken equal to unity, then it is con- 
venient to denote the intervals referred to above as 2Atk, the time (probability) of exis- 
tence of a transport velocity for the liquid layer in the segment b k and l-2Atk, the lifetime 
of the initial laminar flow velocity v k on the same interval b k. The limit of these time 
intervals is defined by condition (Ii): 

1 - -  2At~ = ~ (Y*). ( 14 )  

Here and below ~ is twice the value of the probability integral in the interval [0, y~_l]. 

With the aid of the integral distribution functions Eq. (9) one can formally obtain two 
equations Yk-l(t) and Yk(t), which take on the meaning of quasikinematic motion equations. 
The fundamental proposition is based on the fact that interaction of the liquid layers as a 
cause of turbulization can be described in the language of collisions of the indicated motion 
equations. Therefore 2At k is the period from the moment of intersection of the curves 
yk-l(t) and Yk(t) to the end of the period (the lifetime of the turbulent vortex). The 
dynamic formalism admits a transformation operator, the eigenvalues of which are the unknown 
quantities At k. Up to some critical value (the first critical Reynolds number) the operator 
functions "at idle," (there is no intersection of the curves yk_l(t) and Yk(t) in the segment 
b k) and becomes significant at Re > Recr. There then occurs a division of the flow velocity 
into a transport translational component related to the adjacent layer and a relative rotary 
velocity. 
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Equating the values of the difference Ok_z-~ k from the two conditions for onset of 
turbulization, Eqs. (2) and (13), we achieve the possibility of determining into how many 
layers the turbulized liquid flow will most probably be divided. For the first two layers 
b I and b 2 (turbulence is initiated in the segment b 2 and at bz + b 2 << R in view of the close- 
ness of the values o I and o 2 one can simplify Eq. (12)) we write 

(r~ -- r~) = ~' (b~ + b~) ( 1 5 )  
bl+2bz 

For Poiseuille flow 

?z 

(where y is the ratio of the pressure gradient (head) to its critical value; a I is calculated 
for the middle of the segment bz: r I and r 2 also correspond to the middle areas of b I and 
b 2 (rz-r2 = (b I + b2)/2). With the aid of Eq. (15) it is simple to obtain the condition 

bl + b 2<-?~R. (16) 28 

For the case of formation of three layers, instead of the two considered above, we ob- 
tain the more severe condition which begins to be satisfied at higher values of y (the pres- 
sure head). A finer division of one and the same portion of the flow into individual layers 
will occur with increase in ~, i.e., Renolds number. This occurs discontinuously, which 
corresponds to known model representations of chaotization of the liquid flow (see [5, 6]). 
In addition it is now possible to estimate the lifetime (probability) of one or the other 
turbulence scale, and their interchangability. A multifrequency turbulence mechanism deve- 
lops. With increase in Reynolds number the probability of appearance of large scales 
vanishes. 

In conclusion, we will turn to the simplest example of existence of two layers b I = R/3 
and b 2 = 2R/3. Then, according to Eq. (14): 

1 -- 2Al 2 ---- q~ (?). ( 17 ) 

We define the velocities vz and v a from the condition of conservation of the hypotheti- 

{v ,5R~ Idpl  VR ~ tip ,~ . cally laminar flow \ ,---- 7 - - ~  i---~,xl and o~ = 3-~N -~x ] The mean flow velocity of the trans- 

port motion of the turbulent liquid U is then definable in terms of the probabilities 2At 2 
and i - 2At 2 : 

U =  5 4 9 v~ + -~ [v2q, (2) + v~(1 - -  q~(?))]. (18) 

For the tube resistance coefficient we obtain the final expression 

L~ 81 (19) 

Lv=1 ? (5 + 44 (?))2 

For y < 1 O ~ 1 and X % i/y (laminar flow), but with further growth in y (pressure gradient), 
the X ~alues begin to increase and the curve passes through a maximum in the interval 
1 < y < /~. The function (19) reproduces the characteristic features of the known experi- 
mental curves of resistance coefficient vs Reynolds number. 

The probability integral O itself is significant for the transition region, after which 
its role fades rapidly. This means that the lifetime of a periodically occurring laminar 
flow 1 - 2At + 0. The system becomes constantly turbulized, and essentially, more organized, 
as is confirmed by Klimontovich's S-theorem on decrease of entropy upon transition from lami- 
nar to turbulent flow [7]. 

With increase in y, according to Eq. (18), the velocity U + ~z and the velocity profile 
collapses severely. Now the expression for the dispersion coefficient, Eq. (2), should be 
supplemented by the following term of the "expansion" in the velocity gradient, which increases 
a great deal. 
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NOTATION 

r, radius vector; x, y, coordinates; v, velocity; 6, Dirac function; f, probability 
density; @, integral distribution function; ~, mean square deviation; 7, gradient operator; 
~, shear viscosity coefficient; p, pressure; R, tube radius; t, time; Re, Reynolds number; 
y, ratio of Reynolds number to critical value; U, mean flow velocity; k, tube resistance 
coefficient. 
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DEVELOPMENT AND MOVEMENT OF VORTEX STRUCTURES NEAR 

THE SURFACE OF A SOLID WALL 

I. A. Belov, B. A. Kolovandin, and 
N. A. Kudryavtsev UDC 532.517.2 

The dynamics of large-scale vortices near the surface of a plate is modeled on the 
basis of numerical integration of nonsteady two-dimensional Navier-Stokes equations. 

Large-scale vortex structures formed near the surface of a solid wall have a significant 
influence on momentum transfer and can be used as a means of controlling flow and heat 
transfer in the boundary layer [i, 2]. In this light, a study we made of the development and 
movement of vortices near the surface of a solid wall is of more than just theoretical 
interest. It also makes it possible to at least qualitatively evaluate the effect of vor- 
tices on such important flow characteristics as wall friction. 

The object of our study was a semiinfinite flat horizontal plate. The vortices were 
generated by a circular cylinder positioned symmetrically relative to the plate at its front 
edge. Provision was made for alternate rotation of the cylinder in the clockwise and counter- 
clockwise directions at a specified velocity. The method of study was based on numerical in- 
tegration of the complete two-dimensional Navier-Stokes equations. Before analyzing the 
results, we will describe features of the numerical method - which was designed for modeling 
nonsteady flows. We will also first demonstrate its use in an example involving the solution 
of a test problem concerning the development of a wake behind an isolated circular cylinder. 

i. Numerical Procedure. In constructing the numerical method, we use a difference grid 
and calculate the velocity components at nodes located a half-step from the nodes where 
pressure is recorded. Figure 1 shows an element of the grid and a characteristic control 
volume surrounding the node P. Integration over the control volume reduces the system of 
equations of continuity and momentum change to the form: 

I = 0, (1) 

(O@/OO Vol + F = O, (2)  
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